博客
关于我
基于Tensorflow的动态实时检测识别测试案例
阅读量:322 次
发布时间:2019-03-04

本文共 4589 字,大约阅读时间需要 15 分钟。

当然是借助了tensorflow的ssd_mobilenet_v1_coco_11_06_2017模型数据已经训练好的模型来进行实时检测。不足的地方在于不能能够在复杂环境下进行模式的识别。

# -*- coding: utf-8 -*-

"""
Created on Thu Jan 11 16:55:43 2018

@author: Xiang Guo

"""
# Imports
import time

start = time.time()

import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
import cv2

from collections import defaultdict

from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image

# if tf.__version__ < '1.4.0':

#     raise ImportError('Please upgrade your tensorflow installation to v1.4.* or later!')

os.chdir('./')#表示根目录下

# Env setup

# This is needed to display the images.
# %matplotlib inline

# This is needed since the notebook is stored in the object_detection folder.

sys.path.append("..")

# Object detection imports

from utils import label_map_util

from utils import visualization_utils as vis_util

# Model preparation

# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'

MODEL_FILE = MODEL_NAME + '.tar.gz'

DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'

# Path to frozen detection graph. This is the actual model that is used for the object detection.

PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'

# List of the strings that is used to add correct label for each box.

PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')

NUM_CLASSES = 90

'''

#Download Model

opener = urllib.request.URLopener()

opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
  file_name = os.path.basename(file.name)
  if 'frozen_inference_graph.pb' in file_name:
    tar_file.extract(file, os.getcwd())
'''

# Load a (frozen) Tensorflow model into memory.

detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    # Loading label map

label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
                                                            use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Helper code

def load_image_into_numpy_array(image):
    (im_width, im_height) = image.size
    return np.array(image.getdata()).reshape(
        (im_height, im_width, 3)).astype(np.uint8)

# Detection

# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images2'
TEST_IMAGE_PATHS = [os.path.join(PATH_TO_TEST_IMAGES_DIR, 'frame{}.jpg'.format(i)) for i in range(2176, 2179)]

# Size, in inches, of the output images.

IMAGE_SIZE = (12, 8)

output_path = ('D:\\tensorflow-model\\models\\research\\object_detection\\test_output\\')

vidcap = cv2.VideoCapture(0)

with detection_graph.as_default():

    with tf.Session(graph=detection_graph) as sess:
        # Definite input and output Tensors for detection_graph
        image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
        # Each box represents a part of the image where a particular object was detected.
        detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
        # Each score represent how level of confidence for each of the objects.
        # Score is shown on the result image, together with the class label.
        detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
        detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
        num_detections = detection_graph.get_tensor_by_name('num_detections:0')

        while (True):

            ret, image_np = vidcap.read()

            if ret == True:

                # Expand dimensions since the model expects images to have shape: [1, None, None, 3]

                image_np_expanded = np.expand_dims(image_np, axis=0)
                # Actual detection.
                (boxes, scores, classes, num) = sess.run(
                    [detection_boxes, detection_scores, detection_classes, num_detections],
                    feed_dict={image_tensor: image_np_expanded})
                # Visualization of the results of a detection.
                vis_util.visualize_boxes_and_labels_on_image_array(
                    image_np,
                    np.squeeze(boxes),
                    np.squeeze(classes).astype(np.int32),
                    np.squeeze(scores),
                    category_index,
                    use_normalized_coordinates=True,
                    line_thickness=8)

                cv2.imshow('object_detection', cv2.resize(image_np, (800, 600)))

                if cv2.waitKey(25) & 0xFF == ord('q'):
                    cv2.destroyAllWindows()
                    break

            # Break the loop

            else:
                break

end = time.time()

print("Execution Time: ", end - start)

运行的截图效果:

 

转载地址:http://uujh.baihongyu.com/

你可能感兴趣的文章
linux下远程上传命令scp
查看>>
可重入和不可重入函数
查看>>
(2.1)关系模型之关系结构和约束
查看>>
深入学习C++
查看>>
双系统基础上装三系统教程
查看>>
android自定义无边框无标题的DialogFragment替代dialog
查看>>
androidstudio同步的时候下载jcenter的库出错解决办法
查看>>
ButterKnife使用问题
查看>>
java基础--继承
查看>>
按位与、或、非、异或总结
查看>>
TCP心跳检测包
查看>>
01 背包问题
查看>>
JVM - 参数配置影响线程数
查看>>
ILI9341几个重要的命令
查看>>
springboot通过控制层跳转页面404
查看>>
idea2020 没有 tomcat server
查看>>
为什么讨厌所谓仿生AI的说法
查看>>
Fatal NI connect error 12547, connecting to: (LOCAL=NO)
查看>>
ORACLE 客户端工具
查看>>
云服务器springboot jar项目开启jmx remote监控-解决无法连接的问题
查看>>